
Mohammad Shaker

mohammadshaker.com

@ZGTRShaker

2010, 11, 12, 13, 14

C++
Programming Language

L10-INheritance

Inheritance

Introduction to Inheritance

• Two common types:

– “has – a ”

• Composition (as we have learned)

– Object containing one or more objects of other classes as members.

» A car has a steering wheel

– “Is – a ”

• Inheritance

– Derived class object treated as base class objects

» A car is a vehicle

» Vehicle properties / behaviors also car properties / behaviors

Inheritance

Computer

Computer

Keyboard

PC

“has – a ”“ is –a ”

Inheritance, “ is –a ” Relationship

The link between classes in an

“is – a ” relationship comes from

the fact that the subclasses

share all the attributes and

behaviors found in the supper

class, plus more!

Computer

PC

“ is –a ”

Inheritance, “ is –a ” Relationship

Computer

PC

“ is –a ”

Inheritance, “ is –a ” Relationship

Vehicle

Car BicycleMotorcycle

“ is –a ”

Inheritance, “ is –a ” Relationship

Vehicle

Car

Boatwheeled

Bicycle

Two-doors four-doors

Inheritance

• Let’s have the following relationship

– Student and instructor (teacher)

• Fields:

– Name, address, phone

• Now, let’s build a class called person

Inheritance

• Now, we think that we can create the following class and carry on

• But we have the idea?

– Inheritance!

class Student
{
private:

person UniversityStudent;
int StuID;
int StuRate;

};

class Instructor
{
private:

person UniversityInstructor;
int InsID;
int InsSalary;

};

Advantages of Inheritance

Person Person

Student Instructor

“has – a ” relationship

Advantages of Inheritance

Person

Student Instructor

“has – a ” relationship

ID, StuRate

Person

ID, InsSalary

Advantages of Inheritance

Person Person

Student Instructor

“ is –a ” “ is –a ”

Advantages of Inheritance

Person

Student Instructor

“ is –a ”

Advantages of Inheritance

• What we do now, is that

– We create a “person” class then

• Inherit from it!

• What to inherit from\to?

– We Inherit class person to class

» Student

» Instructor

– And then, we carry on and add for each class of them their unique features! (ID, StuRate, StuSalary etc)

Advantages of Inheritance

• Advantages of inheritance:

– Saving time

– After saving time building the first part of the solution

• We can concentrate on building more complex materials up ahead

– Can extend or revise (edit) the parent class without corrupting the existing parent class features

– Absorb existing parent class’s data and behaviors

• All public, protected member variables in the main class are accessible from the derived class

• All behaviors inherited too

– Enhance with new capabilities

• Customizing

• Additional behaviors

Thinking Inheritance

• C++ \ Usability

• Creating a “Derived class” from “Base Class” *

• Base Class usually represent:

– Larger set of objects than derived class

– Characteristics that are shared between all of the derived classes

• Derived classes usually represent more specialized group of objects

• Sometimes

– Derived class inherit data members and data functions it does \ doesn’t need or should \ shouldn’t not

have

*Base Class: also called Parent class, Super class, Ancestor

*Derived Class: also called Child Class, Sub Class, Descendant

Class Hierarchy types

• Direct \ Indirect:

– Direct class access

• Inherited explicitly (one level up)

– Indirect class access

• (one or two levels up hierarchy)

• Single \ Multiple:

– Single Inheritance

• From one base class

– Multiple Inheritance

• From multiple base class (only in C++, not in C++.NET, C#, Java, etc.)

Inheritance Examples

Inheritance

Inheritance

Inheritance

Base class Derived classes

Student GraduateStudent, UndergraduateStudent

Shape Circle, Triangle, Rectangle, Sphere, Cube

Loan CarLoan, HomeImprovementLoan, MortgageLoan

Employee Faculty, Staff

Account CheckingAccount, SavingsAccount

Types of Inheritance

Types of Inheritance

Creating a Derived Class

Creating a Derived Class

• Notes:

– When inheriting with public specifier

• friend Functions are not inherited!

– When inheriting with private specifier

• Non of the public methods of the base class are accessible to the users of the derived class

Creating a Derived Class
#include <iostream>

using namespace::std;

class BaseClass

{

};

class DerivedClass: private BaseClass

{

};

#include <iostream>

using namespace::std;

class BaseClass

{

};

class DerivedClass: public BaseClass

{

};

#include <iostream>

using namespace::std;

class BaseClass

{

};

class DerivedClass: protected BaseClass

{

};

#include <iostream>

using namespace::std;

class BaseClass

{

};

class DerivedClass:BaseClass

{

};

When ommiting private, public or protected then

the default is private

Creating a Derived Class

class Vehicle

{

public:

Vehicle ()

{ weight = 0; }

Vehicle (int wt)

{ weight = wt; };

int GetWeight ()

{ return weight; }

void SetWeight (int x)

{ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

Car()

{ speed = 0; }

Car(int wt, int sp)

{ SetWeight(wt); speed = sp; }

int GetSpeed ()

{ return speed; }

void SetSpeed (int x)

{ speed = x; }

private:

int speed;

};

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar(2,3);

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

MyCar.SetWeight(5); // member function in base class

MyCar.SetSpeed(10);

cout << "Printing" << endl;

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

}

3

2

Printing

10

5

Press any key to continue

Live Demo
with Lord of the Rings

(Humans and Goblins inherit from Creatures)

Don’t forget
friend functions are not inherited!

Examples

Creating a Derived Class
class Vehicle

{

public:

Vehicle ()

{ weight = 0; }

Vehicle (int wt)

{ weight = wt; };

int GetWeight ()

{ return weight; }

void SetWeight (int x)

{ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car()

{ speed = 0; }

Car(int wt, int sp)

{ SetWeight(wt); speed = sp; }

int GetSpeed ()

{ return speed; }

void SetSpeed (int x)

{ speed = x; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9; }

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar(2,3);

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

cout << "After 1st change" << endl;

MyCar.SetWeight(5);

MyCar.SetSpeed(10);

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

foo(MyCar);

cout << "After 2nd change" << endl;

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

}

3

2

After 1st change

10

5

After 2nd change

9

5

Press any key to continue

Creating a Derived Class
class Vehicle

{

public:

Vehicle ()

{ weight = 0; }

Vehicle (int wt)

{ weight = wt; };

int GetWeight ()

{ return weight; }

void SetWeight (int x)

{ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car C);

Car()

{ speed = 0; }

Car(int wt, int sp)

{ SetWeight(wt); speed = sp; }

int GetSpeed ()

{ return speed; }

void SetSpeed (int x)

{ speed = x; }

private:

int speed;

};

void foo(Car C)

{ C.speed = 9; }

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar(2,3);

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

cout << "After 1st change" << endl;

MyCar.SetWeight(5);

MyCar.SetSpeed(10);

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

foo(MyCar);

cout << "After 2nd change" << endl;

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

}

3

2

After 1st change

10

5

After 2nd change

10

5

Press any key to continue

Creating a Derived Class
class Vehicle

{

public:

Vehicle ()

{ weight = 0; }

Vehicle (int wt)

{ weight = wt; };

int GetWeight ()

{ return weight; }

void SetWeight (int x)

{ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car C);

Car()

{ speed = 0; }

Car(int wt, int sp)

{ SetWeight(wt); speed = sp; }

int GetSpeed ()

{ return speed; }

void SetSpeed (int x)

{ speed = x; }

private:

int speed;

};

void foo(Car C)

{ C.weight= 9; }

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar(2,3);

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

cout << "After 1st change" << endl;

MyCar.SetWeight(5);

MyCar.SetSpeed(10);

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

foo(MyCar);

cout << "After 2nd change" << endl;

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

}

Compiler error, function foo must not access private data

members of Vehicle

Creating a Derived Class
class Vehicle

{

public:

Vehicle () { weight = 0; }

Vehicle (int wt) { weight = wt;

};

int GetWeight () { return weight; }

void SetWeight (int x) { weight = x;};

int tempWeight;

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() {speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp;

}

int GetSpeed () { return speed; }

void SetSpeed (int x) { speed = x; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar(2,3);

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

MyCar.tempWeight = 5;

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

}

3

2

3

2

Press any key to continue

Creating a Derived Class
class Vehicle

{

public:

Vehicle () { weight = 0; }

Vehicle (int wt) { weight = wt;

};

int GetWeight () { return weight; }

void SetWeight (int x) { weight = x;};

int tempWeight;

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() {speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp;

}

int GetSpeed () { return speed; }

void SetSpeed (int x) { speed = x; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9; C.TempWeight = 10; }

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar(2,3);

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

cout << MyCar.tempWeight << endl;

MyCar.tempWeight = 5;

foo(MyCar);

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

cout << MyCar.tempWeight << endl;

}

3

2

-858993460

9

2

10

Press any key to continue

protected Members

protected Members

• Base class protected members

– Intermediate level of protection between public and private

– Protected data members are accessible through their own class and their own class’s derived classes

• Accessible to

– Base class members (like public)

– Base class friends (like public, private)

– Derived class members (like public)

– Derived class friends (like public)

• BUT NO ONE using base class directly can access them directly (like private)

protected Members

#include <iostream>

using namespace::std;

class Vehicle

{

public:

Vehicle () { weight = 0; }

Vehicle (int wt) { weight = wt; };

int GetWeight () { return weight; }

void SetWeight (int x){ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() {speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

void Print() const { cout << speed << "\n" << weight << endl; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar(2,3);

MyCar.Print();

}

Compile error Car can’t access private data

membes declared in its base class

protected Members

#include <iostream>

using namespace::std;

class Vehicle

{

public:

Vehicle () { weight = 0; }

Vehicle (int wt) { weight = wt; };

int GetWeight () { return weight; }

void SetWeight (int x){ weight = x;};

protected:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() {speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

void Print() const { cout << speed << "\n" << weight << endl; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar(2,3);

MyCar.Print();

}

3

2

protected Members

#include <iostream>

using namespace::std;

class Vehicle

{

public:

Vehicle () { weight = 0; }

Vehicle (int wt) { weight = wt; };

int GetWeight () { return weight; }

void SetWeight (int x){ weight = x;};

protected:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() {speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

void Print() const { cout << speed << "\n" << weight << endl; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar(2,3);

MyCar.weight = 3;

cout << MyCar.weight << endl;

}

Compiler error, can’t access protected data

members directly from outside the class

protected Members

class Vehicle

{

public:

Vehicle () { weight = 0; }

Vehicle (int wt) { weight = wt; };

int GetWeight () { return weight; }

void SetWeight (int x){ weight = x;};

protected:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() {speed = 0; }

Car(int wt, int sp){ weight = wt; speed = sp; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

void Print() const { cout << speed << "\n" << weight << endl; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar(2,3);

MyCar.Print();

}

3

2

protected Members

• Problems of protected

– No validity checking between derived class and the base one

– Derived class can assign illegal values to protected members (since they can access them directly.)

– Implementation dependent

• Fragile (brittle) software

protected Members

#include <iostream>

using namespace::std;

class Vehicle

{

public:

Vehicle () { weight = 0; }

Vehicle (int wt) { weight = wt; };

int GetWeight() const { return weight; }

void SetWeight (int x){ weight = x;};

void GetName1() const { cout << "I'm a vehicle " << endl; }

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() {speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

void GetName2() const { cout << "I'm a car " << endl; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar(2,3);

MyCar.GetName2();

}

I'm a car

Press any key to continue

protected Members

#include <iostream>

using namespace::std;

class Vehicle

{

public:

Vehicle () { weight = 0; }

Vehicle (int wt) { weight = wt; };

int GetWeight() const { return weight; }

void SetWeight (int x){ weight = x;};

void GetName1() const { cout << "I'm a vehicle " << endl; }

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() {speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

void GetName2() const { cout << "I'm a car " << endl; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Vehicle MyVehicle;

MyVehicle.GetName1();

Car MyCar(2,3);

MyCar.GetName2();

}

I'm a vehicle

I'm a car

Press any key to continue

protected Members

class Vehicle

{

public:

Vehicle () { weight = 0; }

Vehicle (int wt) { weight = wt; };

int GetWeight() const { return weight; }

void SetWeight (int x){ weight = x;};

void OverFun(){cout<< "In Vehicle class \n";}

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() {speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

void OverFun()

{

cout << "In car class" << endl; Vehicle::OverFun();

// overriding here with::

}

private: int speed;};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Vehicle MyVehicle;

Car MyCar(2,3);

cout << "Printing with Vehicle:" << endl;

MyVehicle.OverFun();

cout << "Printing with car:" << endl;

MyCar.OverFun();

}

Printing with Vehicle:

In Vehicle class

Printing with car:

In car class

In Vehicle class

Press any key to continue

What You Can’t Inherit

What You Can’t Inherit

• The following never ever can be inherited

– Constructors

– Destructors

– Friends

– Static data members

– Static member functions

– new operator

– “=“ operator

Overriding Base Class Behavior

Overriding Base Class Behavior

• What’s overriding \ overloading?

– Any child class function with the same name and same argument list as the parent

• overrides the parent function

– Any child class with the same name, yet with different argument list as for the parent

• overloads the parent function

Constructors and Inheritance

Constructors and Inheritance

• When instantiate a derived class, a constructor for its base class is called first followed by the

derived class constructor.

• Chains of constructors calls

– Base class constructor called last, but

– First to finish executing

• Example: Point \ Circle \ Cylinder

– Point constructor called last, but

– Point constructor body finishes executing first

Constructors and Inheritance

#include <iostream>

using namespace::std;

class Vehicle

{

public:

Vehicle () {cout << "I'm a vehicle!" << endl; weight = 0; }

Vehicle (int wt) {weight = wt; };

int GetWeight() const {return weight; }

void SetWeight (int x){weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() { cout << "I'm a car!" << endl; speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Vehicle MyVehicle;

}

I'm a vehicle!

Press any key to continue

Constructors and Inheritance

#include <iostream>

using namespace::std;

class Vehicle

{

public:

Vehicle () {cout << "I'm a vehicle!" << endl; weight = 0; }

Vehicle (int wt) {weight = wt; };

int GetWeight() const {return weight; }

void SetWeight (int x){weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() { cout << "I'm a car!" << endl; speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar;

}

I'm a vehicle!

I'm a car!

Press any key to continue

Constructors and Inheritance

#include <iostream>

using namespace::std;

class Vehicle

{

public:

Vehicle () {cout << "I'm a vehicle!" << endl; weight = 0; }

Vehicle (int wt) {weight = wt; };

int GetWeight() const {return weight; }

void SetWeight (int x){weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() { cout << "I'm a car!" << endl; speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar();

}

Press any key to continue

Constructors and Inheritance

#include <iostream>

using namespace::std;

class Vehicle

{

public:

Vehicle () {cout << "I'm a vehicle!" << endl; weight = 0; }

Vehicle (int wt) {weight = wt; };

int GetWeight() const {return weight; }

void SetWeight (int x){weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() { cout << "I'm a car!" << endl; speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Vehicle My();

}

Press any key to continue

Constructors and Inheritance

#include <iostream>

using namespace::std;

class Vehicle

{

public:

Vehicle () {cout << "I'm a vehicle!" << endl; weight = 0; }

Vehicle (int wt) {weight = wt; };

int GetWeight() const {return weight; }

void SetWeight (int x){weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() { cout << "I'm a car!" << endl; speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Vehicle My();

My.GetWeight();

}

Compiler error

Constructors and Inheritance

#include <iostream>

using namespace::std;

class Vehicle

{

public:

Vehicle () {cout << "I'm a vehicle!" << endl; weight = 0; }

Vehicle (int wt) { weight = wt; };

int GetWeight() const {return weight; }

void SetWeight (int x){weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() { cout << "I'm a car!" << endl; speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { Vehicle::Vehicle(); return speed; }

void SetSpeed (int x) {speed = x; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar;

cout << MyCar.GetSpeed() <<

endl;

}

I'm a vehicle!

I'm a car!

I'm a vehicle!

0

Press any key to continue

Constructors and Inheritance

class Vehicle

{

public:

Vehicle () {cout << "I'm a vehicle!" << endl; weight = 0; }

Vehicle (int wt){cout << "I'm a vehicle!" << endl; weight += wt; };

int GetWeight() const { return weight; }

void SetWeight (int x){ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() { cout << "I'm a car!" << endl; speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { Vehicle::Vehicle(5); return speed; }

void SetSpeed (int x) {speed = x; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar;

cout << MyCar.GetWeight() << endl;

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

}

I'm a vehicle!

I'm a car!

0

I'm a vehicle!

0

I'm a vehicle!

0

0

Press any key to continue

Constructors and Inheritance

class Vehicle

{

public:

Vehicle () {cout << "I'm a vehicle!" << endl; weight = 0; }

Vehicle (int wt){cout << "I'm a vehicle!" << endl; weight += wt; };

int GetWeight() const { return weight; }

void SetWeight (int x){ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() { cout << "I'm a car!" << endl; speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { Vehicle::Vehicle(5); return speed; }

void SetSpeed (int x) {speed = x; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar;

cout << MyCar.GetWeight() << endl;

cout << MyCar.GetSpeed() << endl;

MyCar.SetWeight(4);

cout << MyCar.GetWeight() << endl;

}

I'm a vehicle!

I'm a car!

0

I'm a vehicle!

0

4

Press any key to continue

Constructors and Inheritance

class Vehicle

{

public:

Vehicle () {cout << "I'm a vehicle!" << endl; weight = 0; }

Vehicle (int wt){cout << "I'm a vehicle!" << endl; weight += wt; };

int GetWeight() const { return weight; }

void SetWeight (int x){ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car() { cout << "I'm a car!" << endl; speed = 0; }

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { Vehicle::Vehicle(5); return speed; }

void SetSpeed (int x) {speed = x; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar;

cout << MyCar.GetWeight() << endl;

cout << MyCar.GetSpeed() << endl;

MyCar.SetWeight(4);

cout << MyCar.GetWeight() << endl;

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

}

I'm a vehicle!

I'm a car!

0

I'm a vehicle!

0

4

I'm a vehicle!

0

4

Press any key to continue

Constructors and Inheritance

class Vehicle

{

public:

Vehicle () { weight = 0; }

Vehicle (int wt){ weight = wt; };

int GetWeight() const { return weight; }

void SetWeight (int x){ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car(int wt, int sp){ SetWeight(wt); speed = sp; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar (2,3);

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

}

3

2

Press any key to continue

Code Cracking

Code Cracking

class Vehicle

{

public:

Vehicle (int wt)

{ weight = wt; };

int GetWeight ()

{ return weight; }

void SetWeight (int x)

{ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

Car()

{ speed = 0; }

Car(int wt, int sp)

{ SetWeight(wt); speed = sp; }

int GetSpeed ()

{ return speed; }

void SetSpeed (int x)

{ speed = x; }

private:

int speed;

};

Compiler error. We didn’t define the 0 parameter Vehicle constructor and but we used

it in the (0 parameter constructor of the) derived class

Code Cracking

class Vehicle

{

public:

Vehicle (int wt)

{ weight = wt; };

int GetWeight ()

{ return weight; }

void SetWeight (int x)

{ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

Car()

{ speed = 0; }

Car(int wt, int sp)

{ SetWeight(wt); speed = sp; }

int GetSpeed ()

{ return speed; }

void SetSpeed (int x)

{ speed = x; }

private:

int speed;

};

The derived class implicitly call the base

class constructor!

Code Cracking

class Vehicle

{

public:

Vehicle (int wt)

{ weight = wt; };

int GetWeight ()

{ return weight; }

void SetWeight (int x)

{ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

Car()

{ speed = 0; }

Car(int wt, int sp)

{ SetWeight(wt); speed = sp; }

int GetSpeed ()

{ return speed; }

void SetSpeed (int x)

{ speed = x; }

private:

int speed;

};

The compiler looks for a matching non-

parameter base class constructor but

can’t find one!

Code Cracking

class Vehicle

{

public:

Vehicle (int wt)

{ weight = wt; };

int GetWeight ()

{ return weight; }

void SetWeight (int x)

{ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

Car()

{ speed = 0; }

Car(int wt, int sp)

{ SetWeight(wt); speed = sp; }

int GetSpeed ()

{ return speed; }

void SetSpeed (int x)

{ speed = x; }

private:

int speed;

};

To solve this, 2 ways:

1. define an non-parameter base class constructor.

2. call the parametric base class constructor (the one with

parameters) and make an explicit call for it from the derived

class.

Code Cracking
class Vehicle

{

public:

Vehicle ()

{ weight = 0; }

Vehicle (int wt)

{ weight = wt; };

int GetWeight ()

{ return weight; }

void SetWeight (int x)

{ weight = x;};

private:

int weight;

};

class Car: private Vehicle

{

public:

Car()

{ speed = 0; }

Car(int wt, int sp)

{ SetWeight(wt); speed = sp; }

int GetSpeed ()

{ return speed; }

void SetSpeed (int x)

{ speed = x; }

private:

int speed;

};

Error 1 error C2247: 'Vehicle::GetWeight' not accessible because 'Car' uses 'private' to inherit from 'Vehicle'

c:\users\zmee\documents\visual studio 2008\projects\exam\exam\exam.cpp 11 Exam

Error 2 error C2247: 'Vehicle::SetWeight' not accessible because 'Car' uses 'private' to inherit from 'Vehicle'

c:\users\zmee\documents\visual studio 2008\projects\exam\exam\exam.cpp 13 Exam

Code Cracking
class Vehicle

{

public:

Vehicle ()

{ weight = 0; }

Vehicle (int wt)

{ weight = wt; };

int GetWeight ()

{ return weight; }

void SetWeight (int x)

{ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

Car()

{ speed = 0; }

Car(int wt, int sp)

{ weight = wt; speed = sp; }

int GetSpeed ()

{ return speed; }

void SetSpeed (int x)

{ speed = x; }

private:

int speed;

};

Compiler error. Can’t access private data member of the base class directly

Creating a Derived Class
As we have seen, derived class can affect state changes in private base-class members.

BUT ONLY THROUGH, Non-private functions provided in the base class and inherited into the derived class.

Code Cracking
class Vehicle

{

public:

friend void foo(Vehicle &V);

Vehicle ()

{ weight = 0; }

Vehicle (int wt)

{ weight = wt; };

int GetWeight ()

{ return weight; }

void SetWeight (int x)

{ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

Car()

{ speed = 0; }

Car(int wt, int sp)

{ SetWeight(wt); speed = sp; }

int GetSpeed ()

{ return speed; }

void SetSpeed (int x)

{ speed = x; }

private:

int speed;

};

void foo(Vehicle &V)

{ V.weight = 9; }

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Vehicle V;

Car MyCar(2,3);

MyCar.SetWeight(5); // member function in base class

MyCar.SetSpeed(10);

MyCar.foo(V);

cout << "Printing" << endl;

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

}

Printing

10

5

Press any key to continue

Code Cracking
class Vehicle

{

public:

friend void foo(Vehicle &V);

Vehicle ()

{ weight = 0; }

Vehicle (int wt)

{ weight = wt; };

int GetWeight ()

{ return weight; }

void SetWeight (int x)

{ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

Car()

{ speed = 0; }

Car(int wt, int sp)

{ SetWeight(wt); speed = sp; }

int GetSpeed ()

{ return speed; }

void SetSpeed (int x)

{ speed = x; }

private:

int speed;

};

void foo(Vehicle &V)

{ V.weight = 9; }

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Vehicle V;

Car MyCar(2,3);

MyCar.SetWeight(5); // member function in base class

MyCar.SetSpeed(10);

foo(V);

cout << "Printing" << endl;

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

}

Compiler error. foo is not a member functions in Car. It’s not

inherited!

Constructors and Destructors

Constructors and Destructors

• Chain of destructors calls

– Reverse order of constructor chain

– Destructor of the derived class called first

– Destructor of the next class up hierarchy called next

• Continue up hierarchy until final base class is reached

• After final base class destructor, object is removed from memory

Constructors and Destructors
class Vehicle

{

public:

Vehicle () { weight = 0; }

Vehicle (int wt){ weight = wt; cout <<"Vehicle class " <<

weight << endl;};

~Vehicle(){cout << "Destructing vehicle class for " << weight

<< endl; }

int GetWeight() const { return weight; }

void SetWeight (int x) { weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car(int wt, int sp):Vehicle(wt){speed = sp; cout <<"Car class

for "

<< speed << "-" << GetWeight() << endl;

}

~Car(){cout << "Destructing car class for " << speed << "-"

<< GetWeight() << endl; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Vehicle V1;

{

Vehicle V2;

Car MyCar1 (2,3);

}

Car MyCar2 (2,3);

Car MyCar3 (2,3);

Vehicle V3;

}

Vehicle class 2

Car class for 3-2

Destructing car class for 3-2

Destructing vehicle class for 2

Destructing vehicle class for 0

Vehicle class 2

Car class for 3-2

Vehicle class 2

Car class for 3-2

Destructing vehicle class for 0

Destructing car class for 3-2

Destructing vehicle class for 2

Destructing car class for 3-2

Destructing vehicle class for 2

Destructing vehicle class for 0

Press any key to continue

Constructors and Destructors
class Vehicle

{

public:

Vehicle () { weight = 0; }

Vehicle (int wt){ weight = wt; cout <<"Vehicle class " <<

weight << endl;};

~Vehicle(){cout << "Destructing vehicle class for " << weight

<< endl; }

int GetWeight() const { return weight; }

void SetWeight (int x) { weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car(int wt, int sp):Vehicle(wt){speed = sp; cout <<"Car class

for "

<< speed << "-" << GetWeight() << endl;

}

~Car(){cout << "Destructing car class for " << speed << "-"

<< weight << endl; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

private:

int speed;

};

void foo(Car &C)

{ C.speed = 9;}

Compiler error, accessing private data member of vehicle

Multiple Inheritance

Single VS Multiple Inheritance

Single VS Multiple Inheritance

Multiple Inheritance

• Looks like the single inheritance

• Except!

– There’s multiple base classes

– Separated by commas

– Individually can be declared as public, protected or private

• Default is private

– Inherited member variables are accessible according to the rules of single inheritance

• Name conflicts

– Can result in a member of a base class being hidden by the member of the derived class with the same

name.

Multiple Inheritance

#include <iostream>

using namespace::std;

class OptionList

{

public:

OptionList(){cout << "OptionList constructor \n";};

~OptionList(){cout << "OptionList destructor \n";};

};

class Window

{

public:

Window(){cout << "Window constructor \n";};

~Window(){cout << "Window destructor \n";};

};

class Menu: public OptionList, public Window

{

public:

Menu(){cout << "Menu constructor \n";};

~Menu(){cout << "Menu destructor \n";};

};

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Menu M;

}

OptionList constructor

Window constructor

Menu constructor

Menu destructor

Window destructor

OptionList destructor

Press any key to continue

Multiple Inheritance

#include <iostream>

using namespace::std;

class OptionList

{

public:

OptionList(){cout << "OptionList constructor \n";};

~OptionList(){cout << "OptionList destructor \n";};

};

class Window

{

public:

Window(){cout << "Window constructor \n";};

~Window(){cout << "Window destructor \n";};

};

class Menu: public Window, public OptionList

{

public:

Menu(){cout << "Menu constructor \n";};

~Menu(){cout << "Menu destructor \n";};

};

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Menu M;

}

Window constructor

OptionList constructor

Menu constructor

Menu destructor

OptionList destructor

Window destructor

Press any key to continue

The constructors runs in order
of declaration

Multiple Inheritance

#include <iostream>

using namespace::std;

class OptionList

{

public:

OptionList(){cout << "OptionList constructor \n";};

~OptionList(){cout << "OptionList destructor \n";};

};

class Window

{

public:

Window(){cout << "Window constructor \n";};

~Window(){cout << "Window destructor \n";};

};

class Menu: public Window, public OptionList

{

public:

Menu(){cout << "Menu constructor \n";};

~Menu(){cout << "Menu destructor \n";};

};

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Menu M();

}

Press any key to continue

Multiple Inheritance

#include <iostream>

using namespace::std;

class OptionList

{

public:

//OptionList(){cout << "OptionList constructor \n";};

~OptionList(){cout << "OptionList destructor \n";};

};

class Window

{

public:

//Window(){cout << "Window constructor \n";};

~Window(){cout << "Window destructor \n";};

};

class Menu: public Window, public OptionList

{

public:

Menu(){cout << "Menu constructor \n";};

~Menu(){cout << "Menu destructor \n";};

};

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Menu M;

}

Menu constructor

Menu destructor

OptionList destructor

Window destructor

Press any key to continue

Multiple Inheritance

#include <iostream>

using namespace::std;

class OptionList

{

public:

//OptionList(){cout << "OptionList constructor \n";};

OptionList(int x){cout << "OptionList constructor \n";};

~OptionList(){cout << "OptionList destructor \n";};

};

class Window

{

public:

//Window(){cout << "Window constructor \n";};

Window(int y){cout << "Window constructor \n";};

~Window(){cout << "Window destructor \n";};

};

class Menu: public Window, public OptionList

{

public:

Menu(){cout << "Menu constructor \n";};

~Menu(){cout << "Menu destructor \n";};

};

Compiler error

Multiple Inheritance

#include <iostream>

using namespace::std;

class OptionList

{

public:

//OptionList(){cout << "OptionList constructor \n";};

OptionList(int x){cout << "OptionList constructor \n";};

~OptionList(){cout << "OptionList destructor \n";};

};

class Window

{

public:

//Window(){cout << "Window constructor \n";};

Window(int y){cout << "Window constructor \n";};

~Window(){cout << "Window destructor \n";};

};

class Menu: public Window, public OptionList

{

public:

Menu(int n, int m):Window(n),OptionList(m){cout<<"Menu constructor

\n";};

~Menu(){cout << "Menu destructor \n";};

};

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Menu M;

}

Window constructor

OptionList constructor

Menu constructor

Menu destructor

OptionList destructor

Window destructor

Press any key to continue

Multiple Inheritance

#include <iostream>

using namespace::std;

class OptionList

{

public:

//OptionList(){cout << "OptionList constructor \n";};

OptionList(int x){cout << "OptionList constructor \n";};

~OptionList(){cout << "OptionList destructor \n";};

};

class Window

{

public:

//Window(){cout << "Window constructor \n";};

Window(int y){cout << "Window constructor \n";};

~Window(){cout << "Window destructor \n";};

};

class Menu: public Window, public OptionList

{

public:

Menu(int n, int m):OptionList(m),Window(n){cout<<"Menu constructor

\n";};

~Menu(){cout << "Menu destructor \n";};

};

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Menu M;

}

Window constructor

OptionList constructor

Menu constructor

Menu destructor

OptionList destructor

Window destructor

Press any key to continue

Multiple Inheritance

#include <iostream>

using namespace::std;

class OptionList

{

public:

OptionList(int x){cout << "OptionList constructor \n";};

~OptionList(){cout << "OptionList destructor \n";};

void HighLighting(){cout << "In OptionList \n";};

};

class Window

{

public:

Window(int y){cout << "Window constructor \n";};

~Window(){cout << "Window destructor \n";};

void HighLighting(){cout << "In Window\n";};

};

class Menu: public Window, public OptionList

{

public:

Menu(int n, int m):OptionList(n), Window(m){cout << "Menu constructor

\n";};

~Menu(){cout << "Menu destructor \n";};

};

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Menu M(2,3);

}

Compile and run

Multiple Inheritance

#include <iostream>

using namespace::std;

class OptionList

{

public:

OptionList(int x){cout << "OptionList constructor \n";};

~OptionList(){cout << "OptionList destructor \n";};

void HighLighting(){cout << "In OptionList \n";};

};

class Window

{

public:

Window(int y){cout << "Window constructor \n";};

~Window(){cout << "Window destructor \n";};

void HighLighting(){cout << "In Window\n";};

};

class Menu: public Window, public OptionList

{

public:

Menu(int n, int m):OptionList(n), Window(m){cout << "Menu constructor

\n";};

~Menu(){cout << "Menu destructor \n";};

};

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Menu M(2,3);

M.HighLighting();

}

Now, it’s a compiler error

Multiple Inheritance

#include <iostream>

using namespace::std;

class OptionList

{

public:

OptionList(int x){cout << "OptionList constructor \n";};

~OptionList(){cout << "OptionList destructor \n";};

void HighLighting(){cout << "In OptionList \n";};

};

class Window

{

public:

Window(int y){cout << "Window constructor \n";};

~Window(){cout << "Window destructor \n";};

void HighLighting(){cout << "In Window\n";};

};

class Menu: public Window, public OptionList

{

public:

Menu(int n, int m):OptionList(n), Window(m){cout << "Menu constructor

\n";};

~Menu(){cout << "Menu destructor \n";};

};

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Menu M(2,3);

M.Window::HighLighting();

M.OptionList::HighLighting();

}

Window constructor

OptionList constructor

Menu constructor

In Window

In OptionList

Menu destructor

OptionList destructor

Window destructor

Press any key to continue

Float, double,

long double

C++ data types

StructuredSimpleAddress

Pointer

Reference

enum

Floating

Array

Struct

Union

Class

Char, Short, int,

long, bool

Integral

Nested Classes
Classes that are defined inside another classes are called nested classes

In the public, private or protected section
Such a nested class can be considered a member of the outer class

Nested classes

• Visibility

– In public section:

• Visible outside the outer class

– In private section:

• Visible only for the member of the outer class

– In protected section:

• Subclasses, derived from the outer class

Nested classes
class Surround

{

public:

class FirstWithin

{

public:

FirstWithin();

int GetVarFirst()

{ return xFirst; }

private:

int xFirst;

};

private:

class SecondWithin

{

public:

SecondWithin();

int GetVarSecond()

{ return xSecond

}

private:

int xSecond;

};

SecondWithin obj;

int xSurround;

};

Class FirstWithin

 Visibility

 Both outside and inside

 Member functions are globally visible

 Int variable is only visible to the class FirstWithin

 Neither Surround nor SecondWithin can access the variable of the class

FirstWithin directly

Nested classes
class Surround

{

public:

class FirstWithin

{

public:

FirstWithin();

int GetVarFirst()

{ return xFirst; }

private:

int xFirst;

};

private:

class SecondWithin

{

public:

SecondWithin();

int GetVarSecond()

{ return xSecond

}

private:

int xSecond;

};

SecondWithin obj;

int xSurround;

};

Class FirstWithin

 Visibility

 Both outside and inside

 Member functions are globally visible

 Int variable is only visible to the class FirstWithin

 Neither Surround nor SecondWithin can access the variable of the class

FirstWithin directly

Class SecondWith

 Visibility

 Just inside surround

 Member functions can only be reached by the members of class
SecondWithin only

 Int variable is only visible to the class SecondWithin

 Neither Surround nor FirstWithin can access the variable of the class
SecondWithin directly

class Surround

{

public:

class FirstWithin

{

public:

FirstWithin();

int GetVarFirst();

private:

int xFirst;

};

private:

class SecondWithin

{

public:

SecondWithin();

int GetVarSecond();

private:

int xSecond;

};

SecondWithin obj;

int xSurround;

};

int Surround::FirstWithin::GetVarFirst()

{ return xFirst; }

int Surround::SecondWithin::GetVarSecond()

{ return xSecond; }

Nested classes
class Surround

{

public:

class FirstWithin

{

public:

FirstWithin();

int GetVarFirst()

{ return xFirst; }

private:

int xFirst;

};

private:

class SecondWithin

{

public:

SecondWithin();

int GetVarSecond()

{ return xSecond

}

private:

int xSecond;

};

SecondWithin obj;

int xSurround;

};

Note how we define the

member functions here

class Surround

{

public:

class FirstWithin

{

public:

FirstWithin();

int GetVarFirst();

private:

int xFirst;

};

private:

class SecondWithin

{

public:

SecondWithin();

int GetVarSecond();

private:

int xSecond;

};

SecondWithin obj;

int xSurround;

};

int Surround::FirstWithin::GetVarFirst()

{ return xFirst; }

int Surround::SecondWithin::GetVarSecond()

{ return xSecond; }

Nested classes
class Surround

{

public:

class FirstWithin

{

public:

FirstWithin();

int GetVarFirst()

{ return xFirst; }

private:

int xFirst;

};

private:

class SecondWithin

{

public:

SecondWithin();

int GetVarSecond()

{ return xSecond

}

private:

int xSecond;

};

SecondWithin obj;

int xSurround;

};

#include <iostream>

#include "MyFile.h"

using namespace::std;

void main()

{

Surround s;

Surround::FirstWithin First;

}

Compile & Run

class Surround

{

public:

class FirstWithin

{

public:

FirstWithin();

int GetVarFirst();

private:

int xFirst;

};

private:

class SecondWithin

{

public:

SecondWithin();

int GetVarSecond();

private:

int xSecond;

};

SecondWithin obj;

int xSurround;

};

int Surround::FirstWithin::GetVarFirst()

{ return xFirst; }

int Surround::SecondWithin::GetVarSecond()

{ return xSecond; }

Nested classes
class Surround

{

public:

class FirstWithin

{

public:

FirstWithin();

int GetVarFirst()

{ return xFirst; }

private:

int xFirst;

};

private:

class SecondWithin

{

public:

SecondWithin();

int GetVarSecond()

{ return xSecond

}

private:

int xSecond;

};

SecondWithin obj;

int xSurround;

};

void main()

{

Surround s;

Surround::FirstWithin First;

Surround::SecondWithin Second;

}

Compiler error, can’t access private data members

SecondWithin

class Surround

{

public:

class FirstWithin

{

public:

FirstWithin();

int GetVarFirst();

private:

int xFirst;

};

private:

class SecondWithin

{

public:

SecondWithin();

int GetVarSecond();

private:

int xSecond;

};

SecondWithin obj;

int xSurround;

};

int Surround::FirstWithin::GetVarFirst()

{ return xFirst; }

int Surround::SecondWithin::GetVarSecond()

{ return xSecond; }

Nested classes
class Surround

{

public:

class FirstWithin

{

public:

FirstWithin();

int GetVarFirst()

{ return xFirst; }

private:

int xFirst;

};

private:

class SecondWithin

{

public:

SecondWithin();

int GetVarSecond()

{ return xSecond

}

private:

int xSecond;

};

SecondWithin obj;

int xSurround;

};

void main()

{

Surround::FirstWithin First;

Surround s;

s.obj.GetVarSecond();

}

Compile & Run

How can we access private data
members is Nested Classes?

friend!

friend!
Allowing the surrounding class to access private data members of the nested classes.

The nested class to access the private data members of the surrounding class and other
nested classes.

Access Private Members in Nested classes

class Surround

{

public:

class FirstWithin

{

friend class Surround;

public:

FirstWithin();

int GetVarFirst();

private:

static int xFirst;

};

private:

class SecondWithin

{

friend class surround;

public:

SecondWithin();

int GetVarSecond();

private:

static int xSecond;

};

public:

SecondWithin obj;

int xSurround;

};

int Surround::FirstWithin::GetVarFirst()

{ FirstWithin::xFirst = SecondWithin::xSecond; return xFirst; }

int Surround::SecondWithin::GetVarSecond()

{ FirstWithin::xFirst = 9; return xSecond; }

Allowing The surrounding class to

access private data members of the

nested classes

Access Private Members in Nested classes

class Surround

{

public:

class FirstWithin

{

friend class Surround;

public:

FirstWithin();

int GetVarFirst();

private:

static int xFirst;

};

private:

class SecondWithin

{

friend class surround;

public:

SecondWithin();

int GetVarSecond();

private:

static int xSecond;

};

public:

SecondWithin obj;

int xSurround;

};

int Surround::FirstWithin::GetVarFirst()

{ FirstWithin::xFirst = SecondWithin::xSecond; return xFirst; }

int Surround::SecondWithin::GetVarSecond()

{ FirstWithin::xFirst = 9; return xSecond; }

But we are still missing something
What is it?

Access Private Members in Nested classes

class Surround

{

class FirstWithin;

class SecondWithin;

friend class FirstWithin;

friend class SecondWithin;

public:

class FirstWithin

{

friend class Surround;

public:

FirstWithin();

int GetVarFirst();

private:

static int xFirst;

};

private:

class SecondWithin

{

friend class surround;

public:

SecondWithin();

int GetVarSecond();

private:

static int xSecond;

};

public:

SecondWithin obj;

int xSurround;

};

We should use Forward Declaration

So that classes can know other classes exist

Quiz

Quiz #1

class Vehicle

{

public:

Vehicle (char *n) { name = n; weight = 0; }

Vehicle (int wt, char* n){ name=n; cout <<"Vehicle class " << name <<

weight << endl; weight = wt; };

~Vehicle(){cout << "Destructing vehicle class for " << name << weight

<< endl; }

int GetWeight() const { return weight; }

void SetWeight (int x){ weight = x;};

private:

int weight;

char *name;

};

class Car: public Vehicle

{

public:

Car(int wt, int sp, char *n1, char *n2):Vehicle(wt,n2){name = n1; cout

<<"Car class for " << name << speed << "-" << GetWeight() << endl; speed = sp; }

~Car(){cout << "Destructing car class for " << name << speed << "-" <<

GetWeight() << endl; }

int GetSpeed () { return speed; }

void SetSpeed (int x) {speed = x; }

private:

int speed;

char *name;

};

#include <iostream>

#include "Testing.h"

using namespace::std;

static Vehicle VG1("VG1");

Vehicle VG2("VG2");

void main()

{

Vehicle V1("1");

{

static Vehicle V2("2");

Car MyCar1 (2,3,"1","temp1");

}

Car MyCar2 (2,3,"2","temp2");

Car MyCar3 (2,3,"3","temp3");

Vehicle V3 ("3");

}

Vehicle class temp1-858993460

Car class for 1-858993460-2

Destructing car class for 13-2

Destructing vehicle class for temp12

Vehicle class temp2-858993460

Car class for 2-858993460-2

Vehicle class temp3-858993460

Car class for 3-858993460-2

Destructing vehicle class for 30

Destructing car class for 33-2

Destructing vehicle class for temp32

Destructing car class for 23-2

Destructing vehicle class for temp22

Destructing vehicle class for 10

Destructing vehicle class for 20

Destructing vehicle class for VG20

Destructing vehicle class for VG10

Press any key to continue

Quiz #2
#include <iostream>

using namespace::std;

class Vehicle

{

public:

Vehicle ()

{ weight = 0; }

Vehicle (int wt)

{ weight = wt; };

int GetWeight ()

{ return weight; }

void SetWeight (int x)

{ weight = x;};

private:

int weight;

};

class Car: public Vehicle

{

public:

friend void foo(Car &C);

Car()

{ speed = 0; }

Car(int wt, int sp)

{ SetWeight(wt); speed = sp; }

int GetSpeed ()

{ return speed; }

void SetSpeed (int x)

{ speed = x; }

private:

int speed;

};

void foo(Car &C)

{ static int x = 6; C.speed =+ x; x++; }

#include <iostream>

#include "Testing.h"

using namespace::std;

void main()

{

Car MyCar(2,3);

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

foo(MyCar);

MyCar.SetWeight(5);

MyCar.SetSpeed(10);

foo(MyCar);

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

foo(MyCar);

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

foo(MyCar);

cout << MyCar.GetSpeed() << endl;

cout << MyCar.GetWeight() << endl;

}

3

2

7

5

8

5

9

5

